Abstract

A gradient-enhanced smeared crack model and bond-slip interface elements are utilized in finite element simulations of reinforced concrete. The crack model is rooted in an enhanced plasticity theory. It uses the Rankine failure surface dependent on an equivalent inelastic strain measure as well as on its Laplacian. As a result, finitely sized fracture process zones and realistic crack spacings are obtained. A reinforced concrete bar in uniaxial tension is analyzed to demonstrate the regularizing influence of the internal length parameter in the model and to evaluate the influence of the model parameters on the energy dissipation in multiple cracks. A comparison of numerical simulations with experimental results for a beam without shear reinforcement in four-point bending concludes the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.