Abstract

AbstractPahoehoe lobes are often emplaced by the advance of discrete toes accompanied by inflation of the lobe surface. Many random effects complicate modeling lobe emplacement, such as the location and orientation of toe breakouts, their dimensions, mechanical strength of the crust, microtopography, and a host of other factors. Models that treat the movement of lava parcels as a random walk have explained some of the overall features of emplacement. However, cooling of the surface and internal pressurization of the fluid interior have not been modeled. This work reports lobe simulations that explicitly incorporate (1) cooling of surface lava parcels, (2) the propensity of breakouts to occur at warmer margins that are mechanically weaker than cooler ones, and (3) the influence of internal pressurization associated with inflation. The surface temperature is interpreted as a surrogate for the mechanic strength of the crust at each location and is used to determine the probability of a lava parcel transfer from that location. When only surface temperature is considered, the morphology and dimensions of simulated lobes are indistinguishable from equiprobable simulations. However, inflation within a lobe transmits pressure to all connected fluid locations with the warmer margins being most susceptible to breakouts and expansion. Simulations accounting for internal pressurization feature morphologies and dimensions that are dramatically different from the equiprobable and temperature‐dependent models. Even on flat subsurfaces the pressure‐dependent model produces elongate lobes with distinct directionality. Observables such as topographic profiles, aspect ratios, and maximum extents should be readily distinguishable in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.