Abstract

For reduction of particulate matter (PM) including soot in diesel exhaust gas, a diesel particulate filter (DPF) has been developed. However, it would be plugged with PM to cause an increase of filter backpressure. If the backpressure is too high, the fuel consumption rate unexpectedly increases and the engine output may decrease. Then, the filter must be regenerated by oxidizing PM. The system where PM is trapped and oxidized simultaneously is called a continuously regenerating DPF. A catalyst such as platinum is used for the reduction of PM oxidation temperature. Since platinum is a precious and rare metal, the amount of catalyst must be suppressed. In this study, we simulated the continuously regenerating trap system with catalyzed DPF by a lattice Boltzmann method (LBM). For the soot oxidation rate with catalysts, reaction parameters such as activation energy were evaluated by an engine test bench. In the simulation, five cases with different catalyst-coating were considered. Based on the filter backpressure, the coating area for the reduction of catalysts was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.