Abstract

AbstractIn this study, a three-dimensional (3D) numerical investigation of axisymmetric collapse of granular columns has been conducted using the discrete element method (DEM). The simulated granular columns have a constant initial radius of 5.68 mm and three aspect ratios: 0.55, 1.0, and 2.0. The columns consist of uniform spherical quartz particles with a diameter of 0.32 mm. In the DEM model, rotational velocities of particles are reduced by a factor at every time step to partially account for the additional rolling resistance due to the effect of particle shape and hysteretic contact behavior. The simple linear contact model is used; however, its performance is improved by using different stiffness values calculated by nonlinear Hertz–Mindlin contact model for each aspect ratio. The simulated final deposit heights, runout distances, and energy dissipation values are in good agreement with experimental observations reported in the literature. The effects of initial porosity and rotational resistance on...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call