Abstract

Chloride-induced corrosion of steel rebar is one of the primary durability problems for reinforced concrete structures in marine environment. Furthermore, if the surfaces of concrete structures have cracks, additional chloride can penetrate into concrete through cracked zone. For chloride ingression into cracked concrete, former researches mainly focus on influence of crack width on chloride diffusion coefficients. Other crack characteristics, such as chloride depth, crack shape (equal-width crack or tapered crack), crack density, and spacing, are not studied in detail. To fill this gap, this paper presents a numerical procedure to simulate chloride ingression into cracked concrete with different crack geometry characteristics. Cracked concrete is divided into two parts, sound zone and cracked zone. For stress-free concrete, the diffusion coefficient of sound zone is approximately assumed to be the same as sound concrete, and the diffusion coefficient of cracked zone is expressed as a piecewise function of crack width. Two-dimensional finite element method is used to determine chloride concentration. It is found that, with the increasing of crack width, crack depth, and crack amount, chloride ingression will aggravate. The analysis results generally agree with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.