Abstract

In this paper dynamic fracture process due to high-speed impact of steel plunger into ceramic sample is simulated. The developed numerical model is based on finite element method and a concept of incubation time criterion, which is proven applicable in order to predict brittle fracture under high-rate deformation. Simulations were performed for ZrO2(Y2O3) ceramic plates. To characterize fracture process quantitatively fracture surface area parameter is introduced and controlled. This parameter gives the area of new surface created during dynamic fracture of a sample and is essentially connected to energetic peculiarities of fracture process. Multiple simulations with various parameters made it possible to explore dependencies of fracture area on plunger velocity and material properties. Energy required to create unit of fracture area at fracture initiation (dynamic analogue of Griffith surface energy) was evaluated and was found to be an order of magnitude higher as comparing to its static value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call