Abstract
AbstractThis paper presents an approach to model quantum mechanical effects in solid-state devices such as Metal Oxide Semiconductor (MOS) capacitor with and without nanocrystal in the oxide at the device simulation level. This quantum-mechanical model is developed to understand finite inversion layer width and threshold voltage shift. It allows a consistent determination of the physical oxide thickness based on an agreement between the measured and modeled C-V curves. However, as for thinner oxides finite inversion layer width effects become more severe, quantum-mechanical model predicts higher threshold voltage than the classical model. The inversion-layer charge density and MOS capacitance in multidimensional MOS structures are simulated with various substrate doping profiles and gate bias voltages. The effectiveness of the QM correct method for modeling quantum effects in ultrathin oxide MOS structures is also investigated. The CV characteristic is used as a tool to compare results of the QM correction with that of the Schrödinger–Poisson (SP) solution and Classical solution The variation of (different parameters) for various doping profiles at different gate voltages is investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.