Abstract
One of the critical limitations of studies on cardiovascular blood flow simulation is to determine outlet boundary conditions accurately. In the present study, for the first time, pore network model is proposed as a useful technique to take into account interaction between blood flow and other body organs. Thus body organs are simulated by pore network model. Thanks to the method, pressure distribution among the porous medium of organ is determined and consequently the required boundary conditions are obtained for the simulation of arterial blood flow. The comparison between permeability resulted from developed model and experimental results shows that the difference is about 3% for the assumption of non-Newtonian blood flow through organ. This indicates the pore network model can accurately simulate velocity and pressure in the organs. Afterwards, a 3D patient-specific abdominal aorta was simulated under the proposed outlet boundary condition. The maximum deviation of predicted pressure from physiological data is 11.14% near the systole instant. Generally, the predicted pressure and velocity profiles are evident that the model can adequately simulate the blood flow through the arteries which feed main organs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.