Abstract

Rock blasting is a dynamic process accompanied with the propagations of shock waves and the dispersion of the explosion gas. This paper adopts the discontinuous deformation analysis (DDA) method to simulate the rock blasting process. A dynamic parameter adjustment and the non-reflecting boundary condition are implemented in the DDA method. The sub-block DDA method to simulate fracture problems is used. The blasting process in jointed rock mass is simulated by application of the explosion gas pressure on the expanding borehole walls and induced connected fracture surfaces around the boreholes. The blast craters with different overburdens are derived. The whole process including the explosion gas dispersion, borehole expansion, rock mass failure and cast, and the formation of the final blasting piles in rock blasting are well reproduced numerically. Parametric study for different overburdens is carried out, and the results are analyzed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.