Abstract
The need to develop accurate representation of the human eye for the purpose of physiological studies is important to ensure that the predicted results are reliable. The presence of natural circulation of aqueous humor (AH) is evident from clinical, experimental and simulated observations. Most of the thermal models of the human eye that are found in the literature, however, had assumed a stagnant AH inside the anterior chamber. In this paper, a two-dimensional model of the human eye is developed where the circulation of AH inside the anterior chamber is included. The effects of the AH flow on the temperature distribution inside the eye are investigated. The natural circulation of AH is found to increase the temperature and distorts the temperature profile in the cornea and anterior chamber. Further investigations, where an artificial heat source is introduced inside the human eye suggest that AH flow plays a role in the heat transfer at the anterior region of the eye although this has yet to be quantified experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.