Abstract

The CMAQ model (Community Multiscale Air Quality model) was used to stimulate the atmospheric environmental quality of Chengdu urban agglomeration. The result shows that air pollutant concentration in some zones of the urban agglomeration is higher than the allowable limit of the national grade II standard. Fortunately, such zones only cover a small area. Zones where the average daily and annual PM10 concentration is higher than the allowable limit only account for 4% of the total area of Chengdu urban agglomeration. Less than 1% of the total area has the concentration of other pollutants higher than the limit. Zones with pollutant concentration higher than the limit are mainly distributed in Chengdu City, Mianyang City, and Meishan City. Pollutants emitted from the cities of Chengdu urban agglomeration shift on to and interact with each other. Therefore, the air pollutant concentration of one city is partially attributable to pollutants emitted from its own pollution sources and a part of or even most of it results from pollutants from other cities. For example, regarding PM10 in air of Deyang City, only 12% comes from its own pollution sources, and 55% comes from pollution sources of Chengdu, and the rest 29% comes from pollution sources of Mianyang. Regarding Sulfur dioxide in air of Chengdu, 59% comes from local pollution sources of Chengdu and 23% comes from pollution sources of Deyang. Other pollutants are also subject to such a rule. As in the urban agglomeration, there are zones where pollutant concentration is higher than the allowable limit, the existing pollution sources must be further controlled by setting reduction target according to the total capacity. The pollutant emission should be reduced by means of eliminating backward productivity, adjusting structure and layout of industries, and controlling pollution sources in depth to effectively improve the regional environmental air quality. At the same time, as pollutants emitted from the cities interact with each other, the 5 cities must sign a joint prevention and control agreement to collaborate in control of sulfur dioxide, nitrogen oxides, smoke and dust, and organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call