Abstract

A coupled population balance sectional method (PBSM) coupled with computational fluid dynamics (CFD) is presented to simulate the capture of aerosolized oil droplets (AODs) in a range hood exhaust. The homogeneous nucleation and coagulation processes are modeled and simulated with this CFD-PBSM method. With the design angle, α of the range hood exhaust varying from 60° to 30°, the AODs capture increases meanwhile the pressure drop between the inlet and the outlet of the range hood also increases from 8.38Pa to 175.75Pa. The increasing inlet flow velocities also result in less AODs capture although the total suction increases due to higher flow rates to the range hood. Therefore, the CFD-PBSM method provides an insight into the formation and capture of AODs as well as their impact on the operation and design of the range hood exhaust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.