Abstract

The real-time simulation of large-scale fluid scenes is of great value in both research and application. Water when relatively still has a well-defined surface; however, water changes its shape as it moves. In the case of ocean waves, features on the water’s surface move, but the water itself does not travel. The simple surface topology can become arbitrarily complex when the water becomes turbulent. Splashing, foaming, and breaking waves are complex processes best modeled by particle systems and volumetric techniques, but these techniques are inefficient in nonturbulent situations. Ocean tide in different bays can experience rotary tidal currents or other situation. We choose the physical-based SPH(smoothed particle hydrodynamics) fluid simulation method. SPH method belongs to particle method which is has no grid. The advantages of SPH are as follows: simulating liquid convection by particles directly to eliminate numerical fluctuation at free interface; grids unnecessary avoid grid distortion and reconstruction; simulating the fluid problem of significant transformation, especially in dealing the problems such as maximum distortion, the interface of motion material, the deformation boundary and free surface flow. Application of rapid neighboring particle search method, set the number of Department of Physics, as well as the presentation and rendering of fluid material, and finally use the Lagrangian method SPH system initialization and calculate the fluid density, pressure, internal forces and external forces, define the time integration and collision handling. With the analysis of physical-based ocean tide simulation, we can create the animation of the environment, and predict damage of ocean tide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call