Abstract

Three model problems were examined to assess the difficulties involved in using a hybrid scheme coupling flow computation with the Ffowcs Williams and Hawkings equation to predict the noise generated by vortices passing over a sharp edge. The results indicate that the Ffowcs Williams and Hawkings equation correctly propagates the acoustic signals when provided with accurate flow information on the integration surface. The most difficult of the model problems investigated flow over a two-dimensional, thin NACA airfoil with a bluff-body vortex generator positioned at 98% chord. Vortices rolled up downstream of the bluff body. The shed vortices possessed similarities to large coherent eddies in boundary layers in that they interacted and occasionally paired as they convected past the sharp trailing edge of the airfoil. The calculations showed acoustic waves emanating from the airfoil trailing edge. Acoustic directivity and Mach number scaling were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.