Abstract

The electronic absorption spectrum of β-carotene (β-Car) is studied using quantum chemistry and quantum dynamics simulations. Vibrational normal modes were computed in optimized geometries of the electronic ground state S0 and the optically bright excited S2 state using the time-dependent density functional theory. By expressing the S2-state normal modes in terms of the ground-state modes, we find that no one-to-one correspondence between the ground- and excited-state vibrational modes exists. Using the ab initio results, we simulated the β-Car absorption spectrum with all 282 vibrational modes in a model solvent at 300 K using the time-dependent Dirac-Frenkel variational principle and are able to qualitatively reproduce the full absorption line shape. By comparing the 282-mode model with the prominent 2-mode model, widely used to interpret carotenoid experiments, we find that the full 282-mode model better describes the high-frequency progression of carotenoid absorption spectra; hence, vibrational modes become highly mixed during the S0 → S2 optical excitation. The obtained results suggest that electronic energy dissipation is mediated by numerous vibrational modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.