Abstract
Framatome-ANP has developed S-RELAP5, a RELAP5/Mod2 based thermal hydraulic code, and PANBOX, a 3D core kinetics code. By coupling both codes, a powerful neutronic and thermal hydraulic plant model was developed, which is capable of calculating extremely complex transients, particularly events bearing strongly asymmetric phenomena. The capability of the code system has been tested by recalculation of several transients that occurred in Siemens built PWRs. The most complex transient was a loss of load combined with a temporary coastdown of one main coolant pump, which is presented here. Since the measured values from the data recording system of the plant were available, the calculation could be compared to measured parameters. The key phenomenon of the transient is a highly asymmetrical neutronic condition, which was caused by: - the drop of 5 control rod pairs in an asymmetric pattern upon detection of loss of load. - the coastdown of one main coolant pump, due to failure to connect to the auxiliary bus, which allowed coolant in one loop to stagnate and cool. Subsequent reactivation of that pump forced a plug of cold water into one side of the core. The physical progress of the transient is strongly dependent on this double asymmetry; therefore, a 3-D calculation is indispensable for an accurate simulation. The calculated results are in good agreement with measurements and represent an important contribution to code validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.