Abstract

The mathematical model of an integrated human thermal system is formulated. The system consists of an external thermal regulation device on the human body. The purpose of the device (a network of cooling tubes held in contact with the surface of the skin) is to maintain the human body in a state of thermoneutrality. The device is controlled by varying the inlet coolant temperature and coolant mass flow rate. The differential equations of the model are approximated by a set of algebraic equations which result from the application of the explicit forward finite difference method to the differential equations. The integrated human thermal system is simulated for a variety of combinations of the inlet coolant temperature, coolant mass flow rate, and metabolic rates. Two specific cases are considered: (a) the external thermal regulation device is placed only on the head and (b) the devices are placed on the head and the torso. The results of the simulation indicate that when the human body is exposed to hot environment, thermoneutrality can be attained by localized cooling if the operating variables of the external regulation devices(s) are properly controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.