Abstract

Recently, a physical reservoir operation utilizing atomic switch technologies was demonstrated. Atomic switch operates by controlling the formation and annihilation of a metal filament between two electrodes using solid-state electrochemical reactions. In this study, we simulated the operation of an atomic switch-based reservoir by arranging modeled atomic switches in a network. The aim of this study is to confirm that nonlinear transformation and short-term memory in a reservoir operation observed in the experiment can be realized by the integration of atomic switches showing nonvolatile bipolar operation. We incorporated these characteristics by making a simple operating model of a single atomic switch, which successfully reproduced major characteristics of the experimental results of a reservoir operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call