Abstract

A periodic, corrugated, dielectric layer is simulated by an anisotropic dielectric layer of equal thickness. The tensor elements of the equivalent dielectric layer are given in terms of the permittivity of the dielectric material, the period of the surface corrugation, and the width of the corrugations. The validity of this technique is verified by comparing the reflection coefficient of the equivalent layer with that of the corresponding corrugated layer using the moment method. Employing a multiple layer approach, the technique is extended to handle periodic surfaces with arbitrary cross sections which can be used to design millimeter wave dielectric plate polarizers and absorbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.