Abstract

A multichannel vertical vacuum transistor based on the Fowler–Nordheim tunneling emission mechanism was proposed and numerically investigated. The multichannel structure was demonstrated to be effective in enhancing the drain current when compared to the traditional single-channel structure with the same device size. For example, transconductance increased from 0.42 mS of the single-channel structure to 0.86 mS of the four-channel structure. In addition, when the vacuum channel number increases, the size of a single channel decreases correspondingly, leading to a reduction in electric field intensity on the electron emission surface. Thus, the off-state current dramatically reduced by two orders of magnitude reaching10−15 A according to the simulated results. In other words, the ON/OFF drain current ratio of the multichannel structure is significantly enhanced. Furthermore, the simulation results indicate that the cut-off frequency of the multichannel device is 33% higher than that of the traditional single-channel one reaching 0.19 THz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.