Abstract
Hydraulic fracturing wastewaters (HFWWs) contain synthetic organic components and metal ions derived from the formation waters. The risk of spills of HFWW that could impact soil quality and water resources is of great concern. The ability of synthetic components, such as surfactants, in HFWW to be transported through soil and to mobilize metals in soil was examined using column experiments. A spill of HFWW was simulated in bench scale soil column experiments that used an agricultural soil and simulated seven 10-year rain events representing a total of one year's worth of precipitation for Weld County, Colorado. Although no surfactants or their transformation products were found in leachate samples, copper, lead, and iron were mobilized at environmentally relevant concentrations. In general, after the initial spill event, metal concentrations increased until the fourth rain event before decreasing. Results from this study suggest that transport of metals was caused by the high concentrations of salts present in HFWW. This is the first study utilizing authentic HFWWs to investigate the transport of surfactants and their effect on metal mobilization. Importantly, a significant decrease in the water infiltration rate of the soil was observed, leading to the point where water was unable to percolate through due to increasing salinity, potentially having a severe impact on crop production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.