Abstract

40 Gbps WDM systems have been studied by numerical simulation to optimize their performance. Standard single mode fiber is assumed, and the most popular modulation format, NRZ, is used for the study. These assumptions are valid when existing WDM systems are required to upgrade their performance to 40 Gbps. It is shown that the standard single mode fiber can transmit optical signals over 480 km (BER < 10/sup -15/) by optimizing optical and electrical filter characteristics at the receiver and by compensation of dispersion. In addition, when the system performance is mainly limited by ASE noise of EDFAs, it is found that flattop-shaped optical filter at the receiver gives a better result than Gaussian-shaped filter unless the insertion loss of the optical filter is larger than 5dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.