Abstract

Clarifying 18O isotope composition of leaf water (δL,b) would provide theoretical refe-rence for the study of leaf physiology and forest hydrology. We continuously monitored the concentration of atmospheric water vapor (Wa) and 18O isotope composition of atmospheric water vapor (δv) at the canopy of Platycladus lateralis plantation in the mountain area of Beijing. We analyzed the effects of kinetic fractionation coefficients Δk1(32%) and Δk2(28%) on the prediction of δL,b by combining the measured leaf water 18O isotope (δx) and δL,b of P. lateralis. The results showed that the diurnal variation of Wa was irregular. Atmospheric relative humidity (RH) showed a "V" shape of diurnal variation, and stomatal conductance (gs) increased first and then decreased at the diurnal scale. Wa, RH, and gs showed a significant negative correlation with δL,b when isotopes approached a steady-state equilibrium around noon. The kinetic fractionation coefficient Δk1 and Δk2 were applied to the Craig-Gordon model to predict δL,b under the isotopic quasi-steady-state condition. The results showed that the predicted values of Δk2 approached the observed values of δL,b. This result indicated that the application of Δk2 to the model was more consistent with the change of water isotope concentration in the leaves of P. lateralis in the mountain area of Beijing. These results would improve our understanding of water isotope enrichment model and evapotranspiration resolution model in leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call