Abstract

We have conducted three-dimensional (3D) 0–7.5 Hz physics-based wave propagation simulations to model the seismic response of the Long Valley Dam (LVD), which has formed Lake Crowley in Central California, to estimate peak ground motions and settlement of the dam expected during maximum credible earthquake (MCE) scenarios on the nearby Hilton Creek Fault (HCF). We calibrated the velocity structure, anelastic attenuation model, and the overall elastic properties of the dam via linear simulations of a Mw 3.7 event as well as the Mw 6.2 Chalfant Valley earthquake of 1986, constrained by observed ground motions on and nearby the LVD. The Statewide California Earthquake Center (SCEC) Community Velocity Model CVM-S4.26.M01 superimposed with a geotechnical layer using [Formula: see text] information tapered from the surface to a 700-m depth was used in the simulations. We found optimal fit of simulated and observed ground motions at the LVD using frequency-independent attenuation of [Formula: see text] ([Formula: see text] in m/s). Using the calibrated model, we simulated 3D nonlinear ground motions at the LVD for Mw 6.6 rupture scenarios on the HCF using an Iwan-type, multi-yield-surface technique. We use a two-step method where the computationally expensive nonlinear calculations were carried out in a small domain with the plane wave excitation along the bottom boundary obtained from a full-domain 3D linear finite-fault simulation. Our nonlinear MCE simulation results show that peak ground velocities (PGVs) and peak ground accelerations (PGAs) as high as 72 cm/s and 0.55 g, respectively, can be expected at the crest of the LVD. Compared with linear ground motion simulation results, our results show that Iwan nonlinear damping reduces PGAs on the dam crest by up to a factor of 8 and increasingly depletes the high-frequency content of the waves toward the dam crest. We find horizontal relative displacements of the material inside the dam of up to [Formula: see text] and up to [Formula: see text] of vertical subsidence, equivalent to 1% of the dam height.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call