Abstract

This study describes the use of simulation modelling to evaluate the predicted benefits of an effective livestock traceability system in responding to a hypothetical introduction of foot-and-mouth disease (FMD) in to the province of Alberta, Canada, and whether or not the implementation of emergency ring vaccination in addition to a standard stamping-out (SO) strategy would lead to smaller and shorter epidemics. Three introduction scenarios were defined, with the primary case in either an intensive beef feedlot operation, an extensive cow–calf operation or in a swine operation. Disease spread was simulated using, three levels of tracing effectiveness, five types of vaccination zone, three different vaccination start times, three lengths of vaccination campaigns, two levels of culling resource and using FMD strains with two different virulence levels. Using standard SO procedures (without vaccination), improving traceability effectiveness from a level whereby only 65% of movements were traced within 5–7 days, to a capability whereby all movements were traced within 1 day, led to a reduction in the number of infected premises (IPs) between 18.7 and 64.5%, an average saving of CAN$29,000,000 in livestock compensation costs alone, and a reduction in the length of epidemics ranging from 1 to 22 days. The implementation of emergency vaccination also led to a reduction in the number of IPs and a shortening of epidemics. The effects were more pronounced when the higher virulence settings were used, with a predicted reduction in IPs of 16.6–68.7% (mean=48.6%) and epidemics shortened by up to 37 days. Multi-variable analyses showed these effects were highly significant, after accounting for the incursion location, virulence of virus and time of first detection. The results clearly demonstrated the benefits of having effective traceability systems with rapid query and reporting functionality. The results also supported the value of early vaccination as an adjunct to SO in reducing the number of IPs and shortening the length of the epidemics. The most effective vaccination strategy involved a 3km or larger suppressive vaccination zone around all IPs, begun as soon as practicable after first detection, and which continued until the last IP was detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.