Abstract

AbstractIncreasing productivity, as well as flexibility, is required for the industrial production sector. To meet these challenges, concepts in the field of “Industry 4.0” are arising, such as the concept of Digital Twins. Vacuum handling systems are a widespread technology for material handling in industry and face the same challenges and opportunities. In this field, a key issue is the lack of Digital Twins containing behavior models for vacuum handling systems and their components in different applications and use cases. A novel concept for modeling and simulating the fluidic behavior of pneumatic vacuum ejectors as key components of vacuum handling systems is proposed. In order to increase the simulation accuracy, the concept can access instance‐specific data of the used asset instead of object‐specific data. The model and the data are part of the Digital Twins of pneumatic vacuum ejectors, which shall be able to be combined with other components to represent a Digital Twin of entire vacuum handling systems. The proposed model is validated in an experimental test setup and in an industrial application delivering sufficiently accurate results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.