Abstract

In order to achieve effective noise absorption by finite thickness fiber-based materials, fiber-based composites integrating porous, resonant and damping structures were prepared in this research. Here, the effects of gradient structure, number of constituent units, nonwovens thickness and micro-perforated membrane fabric (MPMF) arrangement on the noise reduction of the composites were simulated and measured. The results showed that the gradient fiber-based composite has excellent broadband sound absorption effect. Moreover, designing the arrangement of micro-perforated structures in the composite can further improve its noise reduction coefficient (NRC). The fiber-based composite (thickness of 1.34 cm) designed by the algorithm has an NRC of 0.51, which is much higher than other noise reduction products with the same thickness. The multi-layer fiber-based composites have the advantages of strong noise reduction capability, small thickness, simple processing and low manufacturing cost, which can be flexibly applied in various noise reduction fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.