Abstract

Engineering sesquiterpene synthases to form predefined alternative products is a major challenge due to their diversity in cyclization mechanisms and our limited understanding of how amino acid changes affect the steering of these mechanisms. Here, we use a combination of atomistic simulation and site-directed mutagenesis to engineer a selina-4(15),7(11)-diene synthase (SdS) such that its final reactive carbocation is quenched by trapped active site water, resulting in the formation of a complex hydroxylated sesquiterpene (selin-7(11)-en-4-ol). Initially, the SdS G305E variant produced 20% selin-7(11)-en-4-ol. As suggested by modeling of the enzyme-carbocation complex, selin-7(11)-en-4-ol production could be further improved by varying the pH, resulting in selin-7(11)-en-4-ol becoming the major product (48%) at pH 6.0. We incorporated the SdS G305E variant along with genes from the mevalonate pathway into bacterial BL21(DE3) cells and demonstrated the production of selin-7(11)-en-4-ol at a scale of 10 mg/L in batch fermentation. These results highlight opportunities for the simulation-guided engineering of terpene synthases to produce predefined complex hydroxylated sesquiterpenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.