Abstract
The perovskite solar cell has recently gained momentum within the renewable energy industry due to its unique advantages such as high efficiency and cost-effectiveness. However, its instability remains a challenge to its commercialization. In this study, a singlet fission material, namely tetracene, is coupled with the perovskite solar cell to simulate its effect on the solar cell. The amount of thermalization loss and the temperature of the perovskite layer are simulated and analyzed to indicate the mechanism’s effectiveness. We found that coupling the tetracene layer resulted in a drastic reduction in thermalization loss and a slower slope in perovskite layer temperature. This indicates that tetracene would stabilize the perovskite solar cell and minimize its potential losses. The thickness of the solar cell layers is also analyzed as a factor of the overall effectiveness of singlet fission on solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.