Abstract

A significant portion of bone fractures fail to heal properly, increasing healthcare costs. Advances in fracture management have slowed because translation barriers have limited generation of mechanism-based explanations for the healing process. When uncertainties are numerous, analogical modeling can be an effective strategy for developing plausible explanations of complex phenomena. We demonstrate the feasibility of engineering analogical models in software to facilitate discovery of biomimetic explanations for how fracture healing may progress. Concrete analogical models—Callus Analogs—were created using the MASON simulation toolkit. We designated a Target Region initial state within a characteristic tissue section of mouse tibia fracture at day-7 and posited a corresponding day-10 Target Region final state. The goal was to discover a coarse-grain analog mechanism that would enable the discretized initial state to transform itself into the corresponding Target Region final state, thereby providing an alternative way to study the healing process. One of nine quasi-autonomous Tissue Unit types is assigned to each grid space, which maps to an 80×80 μm region of the tissue section. All Tissue Units have an opportunity each time step to act based on individualized logic, probabilities, and information about adjacent neighbors. Action causes transition from one Tissue Unit type to another, and simulation through several thousand time steps generates a coarse-grain analog—a theory—of the healing process. We prespecified a minimum measure of success: simulated and actual Target Region states achieve ≥ 70% Similarity. We used an iterative refinement protocol to explore many combinations of Tissue Unit logic and action constraints. Workflows progressed through four stages of analog mechanisms. Similarities of 73–90% were achieved for Mechanisms 2–4. The range of Upper-Level similarities increased to 83–94% when we allowed for uncertainty about two Tissue Unit designations. We have demonstrated how Callus Analog experiments provide domain experts with a fresh medium and tools for thinking about and understanding the fracture healing process.

Highlights

  • There are approximately 15 million fractures in the United States, and a significant portion (10–15%) fail to heal properly [1]

  • Translation barriers have limited the generation of mechanism-based explanations of fracture healing processes

  • We created virtual Callus Analogs to simulate how the histologic appearance of a mouse fracture callus may transition from day-7 to day-10

Read more

Summary

Introduction

There are approximately 15 million fractures in the United States, and a significant portion (10–15%) fail to heal properly [1]. Both numbers and costs are predicted to increase as the population ages and as the number of osteoporosis-related fractures increases [2]. It is noteworthy that the gold standard, and most commonly used strategy for fracture nonunion treatment, autogenous bone graft, has not changed in the last 100 years [3, 5]. Introductions of new therapeutics have slowed despite expanded research [6]. The problem is not unique to fracture-healing research; it is encountered within many research domains [7, 8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call