Abstract
The reliability of blades is vital to the system reliability of a hydrokinetic turbine. A time-dependent reliability analysis methodology is developed for river-based composite hydrokinetic turbine blades. Coupled with the blade element momentum theory, finite element analysis is used to establish the responses (limit-state functions) for the failure indicator of the Tsai---Hill failure criterion and blade deflections. The stochastic polynomial chaos expansion method is adopted to approximate the limit-state functions. The uncertainties considered include those in river flow velocity and composite material properties. The probabilities of failure for the two failure modes are calculated by means of time-dependent reliability analysis with joint upcrossing rates. A design example for the Missouri river is studied, and the probabilities of failure are obtained for a given period of operation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.