Abstract

The issues like traffic congestion, parking space and vehicular emission can be reduced by adopting electric narrow tilting three-wheelers, which can also provide a cost-effective and safe mode of transport for low-income people. According to energy technology perspectives 2017, well-to-wheel global greenhouse gas emissions can be reduced up to 1.3 GtCO2-eq by 2060 by adopting electric mobility. This study presents a new and modified SDTC strategy and performance parameters that takes Road Bank Angle (RBA) into account so as to exhibit the adverse effects on rollover safety, ride comfort in terms of the perceived lateral acceleration and desired trajectory. Besides, this study identifies the importance of the RBA consideration in active tilt controlled vehicle for the scenario of parking on sloped surface. Simple electronic control architecture of the SDTC approach with real-time RBA consideration is proposed to address the limitations of SDTC and its supplementary advantages. This study evaluates the scenario of constant turn manoeuvre and vehicle parking on the banked roads. A multi-body model is used to capture the dynamic characteristics of the vehicle, whereas a characteristic of the Tilt Actuation System (TAS) and Active Steering (AS) system is incorporated in the form of a Transfer Function (TF) estimated using a system identification approach. The results indicate that the inclusion of a real-time RBA in the SDTC enables it to maintain steady-state torque and perceived lateral acceleration close to zero with the proposed controlled strategy, and it also keeps the vehicle upright on the sloped surface. It may be concluded that RBA compensation improves the ease of handling the vehicle while parking or riding on a sloped surface without significant control system alterations, which also makes it a viable alternative for physically disabled people.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call