Abstract

PurposeThe purpose of this paper is to demonstrate the potential of simulation approach for performance evaluation in a complex environment with a case of application from Indian Nuclear Power Plant.Design/methodology/approachIn this work, stochastic simulation approach is applied to availability evaluation of AC Power supply system of Indian Nuclear Power Plant (INPP). In the presently followed test, maintenance policies on diesel generators and circuit breakers are considered to exactly model the practical scenario. System success logic incorporates the functional dependencies and dynamics in the sequence of operations and maintenance policies. In each iteration (random experiment), from simulated random behaviour of the system, uptime and down time are calculated based on system success logic. After sufficient number of iterations, unavailability and other required reliability measures are estimated from the results.FindingsThe subsystems of AC Power Supply System of NPP are having multi‐states due to surveillance tests and scheduled maintenance activities. In addition, the operation of DG involves starting and running (till its mission time) which is a sequential (or conditional) event. Furthermore, the redundancies and dependencies are adding to the complexity.Originality/valueThis paper emphasizes the importance of realistic reliability modelling in complex operational scenario with Monte‐Carlo simulation approach. Simulation procedure for evaluating the availability/reliability of repairable complex engineering systems having stand‐by tested components is presented. The same simulation model finds application in importance measures calculation, technical specification optimization and uncertainty quantification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.