Abstract

The development of energy management systems that optimize the electrical energy flows of residential buildings has become important nowadays. The optimization is formulated as a symbolic regression problem that is solved by genetic programming, which provides near optimal results while being highly performant during application. Additionally, the so-trained energy flow controllers are explainable and therefore address three of the current major disadvantages of most existing solutions. 260 controllers are trained to calculate the optimal gridfeed-in value for an inverter and are evaluated for their ability to minimize the energy costs and to support grid stability and battery lifetime. Additionally, they are compared to two existing energy management systems, a rule-based self consumption optimization and a linear model predictive controller. It is shown that this energy management system can significantly minimize energy costs compared to both reference systems by up to 58.25%, support grid stability and prolong battery lifetime by up to 76.48%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.