Abstract
The method of moments is based on a relation Eθ0(h(Xt, θ)) = 0, from which an estimator of θ is deduced. In many econometric models, the moment restrictions can not be evaluated numerically due to, for instance, the presence of a latent variable. Monte Carlo simulations method make possible the evaluation of the generalized method of moments (GMM) criterion. This is the basis for the simulated method of moments. Another approach involves defining an auxiliary model and finding the value of the parameters that minimizes a criterion based either on the pseudoscore (efficient method of moments) or the difference between the pseudotrue value and the quasi-maximum likelihood estimator (indirect inference). If the auxiliary model is sufficiently rich to encompass the true model, then these two methods deliver an estimator that is asymptotically as efficient as the maximum likelihood estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.