Abstract

The stability and breakage behavior of agglomerates is of interest in many applications. It is well known that the internal microstructure is of great influence thereupon. However, the precise relationship of structural properties and mechanical behavior is not yet known for many scenarios. In this paper, we consider a flexible stochastic model to analyze the strength of spherical agglomerates consisting of spherical primary particles, arranged as core and shell. Structural properties can be varied in core and shell independently. Applying the bonded-particle model (BPM), we investigate the influence of the primary particle size distributions in core and shell on the breakage behavior under uniaxial compressive load. To get more meaningful results, we perform numerical studies of the same agglomerate with different directions of force and investigate the variation in breakage behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.