Abstract

Renewable energy resources are contributing evermore to the generation mix worldwide, however, expanding grids in size and complexity have given rise to unforeseen complications such as frequency oscillations, voltage sags and spikes, and power outages. In 2013, nearly 100% of electricity generation in Iceland was from hydropower and geothermal sources; there is also high potential for wind and tidal energy, both options are being explored and would benefit from additional technologies to manage fluctuations and store energy surplus. Landsnet is the sole transmission system operator (TSO) responsible for energy balance in Iceland. On the consumer side, load variations represent difficulties for utilities to meet ever-changing demand. Research indicates high-capacity electricity energy storage (EES) has the potential to be economically beneficial as well as carbon neutral, all while improving power and voltage quality, peak-shaving, reducing the number of grid failures and reducing natural fluctuations in renewable energy (RE) sources. Two complex resource deployment scenarios are modeled using GridCommand™ Distribution: (1) large-scale 10 MWh capacity EES evenly distributed across the transmission system, and (2) large-scale 10 MWh capacity EES clustered at targeted substations in the transmission system. Results reveal 10 MWh capacity battery EES at a density of 60% in the transmission model provides optimal performance conditions. Optimal conditions are defined by EES performance metrics, and signify improvements in power quality, energy balance, and peak-shaving when electricity demand is at its highest. EES technologies are presented and tested at different locations across the Icelandic grid to predict which solutions are best for the future development of the electricity system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call