Abstract
A new methodology is proposed to estimate theoretical prices of financial contingent claims whose values are dependent on some other underlying financial assets. In the literature, the preferred choice of estimator is usually maximum likelihood (ML). ML has strong asymptotic justification but is not necessarily the best method in finite samples. This paper proposes a simulation-based method. When it is used in connection with ML, it can improve the finite-sample performance of the ML estimator while maintaining its good asymptotic properties. The method is implemented and evaluated here in the Black-Scholes option pricing model and in the Vasicek bond and bond option pricing model. It is especially favored when the bias in ML is large due to strong persistence in the data or strong nonlinearity in pricing functions. Monte Carlo studies show that the proposed procedures achieve bias reductions over ML estimation in pricing contingent claims when ML is biased. The bias reductions are sometimes accompanied by reductions in variance. Empirical applications to U.S. Treasury bills highlight the differences between thebondpricesimpliedbythesimulation-basedapproachandthosedeliveredbyML.Some consequences for the statistical testing of contingent-claim pricing models are discussed. (JEL C11, C15, G12)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.