Abstract

Carbon fibre-reinforced plastic (CFRP) is a promising material for aircraft and other lightweight applications. To be competitive with low-cost metal based solutions highly effective and flexible production technologies are required. For this purpose production systems comprising automated fibre placement or automated tape laying technology are on the market for several years and widely spread. However, there is still a lack of automated systems capable of producing preforms efficiently and flexibly from textile semi-finished goods. Non-crimp fabrics (NCF) and weaves have to undergo considerable shear and reshaping during the layup of 3D-curved preforms in order to properly fit the 2D cut pieces to the moulds.At the Center for Lightweight Production Technology (ZLP) a digital and automated process for the easy draping of large NCF and weave cut pieces with several robots according to the previous draping simulation has been set up and tested in a robotic work cell. The details of converting the draping simulation into correct and easy to setup motions for cooperating robots and how to execute the entire process autonomously, i.e. without teaching the robots, are described. On the basis of preliminary tests the system’s capabilities on a large scale demonstrator part resembling an airplane’s rear pressure bulkhead are evaluated. An overview of the system’s architecture from simulation based planning to detecting, correct gripping, collision free autonomous transport and laydown of the cut pieces is also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.