Abstract

There are many Geo-Location techniques proposed in cellular networks. They are mainly classified based on the parameters used to extract location information. In this study it is tried to have a new look to these positioning methods and to classify them differently regardless of parameters type. We classified these techniques base on mathematical algorithms which is used to derive location information of users in the network. Such algorithms are divided into three main subclasses in here, estimation theory based (MUSIC, ESPIRIT), Meta- heuristic (Genetic, PSO...) and filtering approaches (Kalman, Particle, Grid, MH ). The proofs and details of how to apply techniques are presented and the simulation results are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.