Abstract
We study radiation therapy scheduling problem where dynamically and stochastically arriving patients of different types are scheduled to future days. Unlike similar models in the literature, we consider cancellation of treatments. We formulate this dynamic multi-appointment patient scheduling problem as a Markov Decision Process (MDP). Since the MDP is intractable due to large state and action spaces, we employ a simulation-based approximate dynamic programming (ADP) approach to approximately solve our model. In particular, we develop Least-square based approximate policy iteration for solving our model. The performance of the ADP approach is compared with that of a myopic heuristic decision rule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.