Abstract

Radiofrequency ablation therapy of liver cancer is a local mini-invasive treatment technology with several advantages, such as low trauma, safety, effectiveness, and quick postoperative recovery. The application of the optical surgical navigation system in radiofrequency ablation therapy can realize the real-time positioning of surgical instruments and focus. The positioning results can be displayed on the computer, thereby guiding doctors to accurately insert the radiofrequency electrode into the focus and improving surgical efficiency. Meanwhile, the accurate evaluation of the form and size of the ablation focus by the navigation system is the key to realizing the complete ablation of liver cancer. Therefore, based on the heat conduction equation, this paper simplifies the simulation process of the ablation focus, calculates the volume of the ablation focus by distinguishing boundary points and internal points, achieves the effective simulation of the ablation results in the surgery, and reconstructs the ablation focus by using ray casting algorithm and mobile cube algorithm for 3D visualization processing, thereby providing doctors the convenience of being able to simulate the radiofrequency ablation surgery before the actual surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call