Abstract
Abstract A new visualization method for studying the damage to gel structure caused by high salinity ions is explored by using the characteristics of suppression image signal of Mn2+ and nuclear magnetic resonance (NMR) imaging technique. The diffusion and distribution characteristics of Mn2+ in porous media-gel system were studied based on manganese chloride static diffusion and gel flooding experiments, and the gel’s nuclear magnetic image and displacement pressure were tested. The results show that the diffusion of Mn2+ conforms to the Fick diffusion law in porous media-gel system, and the diffusion speed of Mn2+ increases and the area of gel image decreases gradually with the increase of concentration, and the image of gel decreases faster and the pressure drop of water drive is larger in flooding experiment of manganese chloride with higher concentration. Reaction-diffusion model with the reaction of Mn2+ with gel was established to study the concentration distribution characteristics of Mn2+. The model is validated by comparing the results with magnetic resonance imaging (MRI) experiments and the diffusion coefficient of Mn2+ equals 1.6 mm2/h, and the minimum concentration of Mn2+ to impact gel NMR image signals is 2.5 g/L. The above results show that the diffusion of Mn2+ into the gel in the rock core inhibits the imaging signal of the gel and damages its strength, and the greater the concentration is, the greater the influence. Increase of adsorption amount of gel and reaction rate, reduction of diffusion time, and addition of ion adsorption isolator all can reduce the impact of Mn2+ on the gel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.