Abstract

This paper presents the simulation and analysis of a non-isolated step-up DC-DC converter operating in continuous inductor current mode with fixed switching frequency. The proposed converter proves better steady state performance in terms of improved voltage gain compared to the conventional boost configuration. The suggested two stage converter topology is fed by an uncontrolled diode bridge rectifier for which the sinusoidal input AC voltage is (50/ 2 ) V (rms). The design of the converter is such that the input AC voltage of (50/ 2 ) V (rms) is stepped up to around 256 V (DC) at the load end for the duty ratio value of 0.8. The performance of the proposed converter configuration is validated through simulation in Matlab/Simulink platform. The open-loop configuration provides higher constant output voltage profile compared to the conventional boost topology. The output voltage and current profiles show reduced settling time with almost no overshoot. The output voltage ripple is reduced to lower value. The suggested configuration ensures that the voltage-current stress across the switches is also reduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call