Abstract

Accurate quantification of arsenic migration and accumulation in brownfield site is critical for environmental management and soil remediation. However, the researches simulating arsenic in brownfield site in China are limited due to sparse data and complex migration behaviors. In this study, we simulated historic arsenic contamination using Hydrus-3D in an abandoned brownfield site in Hebei, China, from 1972 to 2019. Atmospheric discharge, wastewater leakage, solid waste discharge and tank leakage were calculated according to the factory processes for model simulation. Based on the results of Hydrus-3D, we assessed health risk of arsenic in this site. The results showed that total arsenic input to the soil surface from 4 pathways was 24.6 tons, the solid waste discharge was the highest contributor. The accumulation process mainly occurred in the unsaturated zone due to clay and silty clay absorbed arsenic and thus slow down the migration process. While in the saturation zone, abundant groundwater promoted migration of arsenic, resulting in widespread distribution of contaminated area. The model results represented good performance between simulated and measured values. Sensitivity analysis indicated that adsorption constant and water conductivity were the most influential parameters. Heath risk assessment showed that arsenic contamination continues to threaten resident health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.