Abstract

The PANDA experiment at the future Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt, aims at studying the strong interacting matter by precision spectroscopy. A detector system with excellent particle identification over a large range of solid angle and momentum is therefore mandatory. Charged hadron identification in the barrel region will be performed by a compact ring imaging Cherenkov detector based on the DIRC principle (Detection of Internally Reflected Cherenkov light), designed to separate pions from kaons with at least 3 standard deviations in the momentum range from 0.5 GeV/c to 3.5 GeV/c. We present details of the simulation of the PANDA Barrel DIRC and a study of the detector performance using a fast reconstruction algorithm to determine the single photon Cherenkov angle resolution and photon yield for several design options.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call