Abstract

Carbonic anhydrase owing to its potential as an industrial biocatalyst for carbon dioxide sequestration from flue gas has attracted considerable attention in solving global warming problems. A large body of research has been conducted to increase the thermal stability of carbonic anhydrase from different sources against the harsh operational conditions of CO2 capture systems. In contrast to cost-intensive protein engineering methods, solvation with aqueous-organic binary mixtures offers a convenient and economical alternative strategy for retention of protein structure and stability. This study aimed to examine the stabilizing effect of methyl diethanolamine (MDEA) as a component of an aqueous-organic solvent mixture on human carbonic anhydrase II (HCA II) at extreme temperatures. Computational and also spectroscopic examinations were employed for tracking conformational changes and stability evaluation of HCA II in 50:50 (vol %) water: MDEA binary mixture at high temperature. Molecular dynamic (MD) simulation studies predicted the high thermal stability of HCA II in the presence of MDEA. UV absorbance spectra confirmed the thermo-stabilizing effect of the binary solvent mixture on HCA II. While the enzymatic activity of HCA II at 25 °C in the presence of 10, 25, and 50 (vol%) of MDEA was substantially increased, no obvious effect on retention of HCA II activity in the water-MDEA binary solvent mixture at 85 °C was seen. It is shown that the solvation of HCA II in the presence of MDEA could result in the prevention of aggregate formation in high temperatures but not functional stability. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call