Abstract

The Blue Tower gasifier (BTG) is a promising and relatively new type of technology that can convert various organic materials into syngas. The process proceeds through a stage-reforming concept and uses heat carrier materials for indirect thermolysis. In addition, the modular design of this technology allows for scalability and ease of installation which can be applied to remote or off-grid communities. In addition, there is potential for the valorization of its gasification products to other useful chemicals. Knowing the potential advantages of this technology, the aim of this work is to introduce the BTG technology for potential application to remote communities and to investigate the effects of the main operational parameters on the performance of the system. In this study, we simulated a BTG system connected to a combined heat and power (CHP) plant using aspen plus with Fortran subroutines and given design specifications. The results obtained in this study were verified with reported data in the literature. The maximum electrical efficiency of the system was calculated to be about 25% for biomass with 5% moisture content, 0.5 steam to biomass ratio, and 900 °C reforming temperature. On the other hand, the highest overall system efficiency of the CHP system (sum of the electrical and the thermal efficiency) was estimated to be about 73% for biomass feedstock with 20% moisture content, 0.5 steam to biomass ratio, and 950 °C reforming temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call