Abstract

The uniformity of temperature field distribution in creep aging process is very important to the forming accuracy of components. In this paper, the temperature field distribution of 2219 aluminum alloy tank cover during aging forming is simulated by using the finite element software FLUENT, and a two-stage heating process is proposed to reduce the temperature field distribution heterogeneity. The results show that the temperature difference of the tank cover is large in the single-stage heating process, and the maximum temperature difference is above 27°C,which seriously affects the forming accuracy of the tank cover. With two-stage heating process, the temperature difference in the first stage has almost no direct impact on the forming accuracy of the top cover. In the second stage, the temperature difference of the tank cover is controlled within 10°C, compared with the single-stage heating, the maximum temperature difference is reduced by more than 17°C. The two-stage heating effectively reduces the heterogeneity of the temperature field of the top cover. The research provides technical support for the precise thermal mechanical coupling of large-scale creep aging forming components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.