Abstract

Steam reforming of natural gas produces the majority of the world's hydrogen (H2) and it is considered as a cost-effective method from a product yield and energy consumption point of view. In this work, we present a simulation and an optimization study of an industrial natural gas steam reforming process by using Aspen HYSYS and MATLAB software. All the parameters were optimized to successfully run a complete process including the hydrogen production zone units (reformer reactor, high temperature gas shift reactor HTS and low temperature gas shift reactor LTS) and the purification zone units (absorber and methanator). Optimum production of hydrogen (87,404 MT/year) was obtained by fixing the temperatures in the reformer and the gas shift reactors (HTS & LTS) at 900 °C, 500 °C and 200 °C respectively while maintaining a pressure of 7 atm, and a steam to carbon ratio (S/C) of 4. Moreover, ~99% of the undesired CO2 and CO gases were removed in the purification zone and a reduction of energy consumption of 77.5% was reached in the heating and cooling units of the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call